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Abstract: This paper focuses on the modeling, solution, and optimization of the motion of a dragon 
dance team along an equidistant spiral trajectory. First, a kinematic model based on the spiral equation 
is constructed, and formulas for the displacement, velocity, and acceleration of the dragon head and 
body are derived. Through numerical simulations, the motion trajectories and velocities of the dragon 
head, body, and tail at different time nodes are calculated, with the results presented in the form of 
tables and graphs. On this basis, a collision detection mechanism is proposed, using geometric 
relationships to determine if the dragon's benches overlap. The collision between the dragon head and 
the following segments of the dragon body is detected using the triangular area method. Numerical 
simulation results show that the first collision occurs at 412.478 seconds, making it impossible for 
the dragon to continue along the spiral path. Subsequently, research is conducted to optimize the 
model, focusing on the pitch parameter and the turnaround curve path. Using incremental search and 
the bisection method, the minimum pitch is determined to be 45.035 cm, enabling the dragon team to 
successfully follow the trajectory without collisions. The optimization of the turnaround path reveals 
that when the tangent distance between the spiral and arc is 427.5 cm, the dragon team achieves the 
optimal path. Additionally, considering the peak velocity of the dragon body, the dragon head's 
velocity and path parameters are optimized to limit the maximum velocity of the dragon body to 
within 2 m/s, ensuring smooth and controllable movement. The results of this study provide 
theoretical support and algorithmic tools for path planning, formation control, and collision detection 
in dragon dance performances. The constructed model and optimization methods can be applied to 
motion control and path optimization for other multi-segment rigid bodies. 

1. Introduction 
The dragon dance is a traditional folk performance art with rich cultural connotations and strong 

visual impact. The path design and formation control of the performance are crucial to its overall 
effect. During the dragon dance, high coordination is required between the head and the body, 
especially when navigating complex paths such as spirals. Ensuring the smooth movement of each 
bench segment and avoiding collisions are key issues that need to be addressed. 

This study focuses on the movement characteristics of the dragon dance team along an equidistant 
spiral trajectory. A kinematic model based on the spiral equation is proposed, and methods for 
calculating the displacement and velocity of the dragon head and body are established. By 
constructing geometric relationships and a collision detection mechanism, collision risks between the 
benches are predicted and detected. Furthermore, pitch optimization, turnaround path optimization, 
and velocity optimization strategies are proposed. Using numerical simulation methods, the optimal 
pitch and turnaround curve are determined to ensure that the maximum peak velocity of the dragon 
body is controlled within a reasonable range. The results of this study provide theoretical support and 
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technical assurance for path planning and motion control in dragon dance performances. 

2. Construction of Spiral Motion Model Dynamic Model 
2.1. Construction of the Kinematic Model 

Spiral Equation: 

pr=
2

θ
π                                (1) 

Arch Length Formula for a Spiral: 
2 2ds dr rdθ= +（ ）（ ）                           (2) 

vr

dr
dt
d
dt
θω

=

                              (3) 
Then, we will get: 

2 2 2
rv v rτ ω= + =

2
r

21 ( ) vr
p
π

+ ⋅
=

221 ( ) drr
p dt
π

+ ⋅
              (4) 

2 2( )  dr
2A

r

r

pt r
π

= +∫
                          (5) 

Take the derivative of both sides with respect to t to obtain the tangential velocity vτ . 

Given that the dragon head's velocity vτ =1m/s and the pitch p = 0.55m, integrating to obtain the 
function of t with respect to r. 

( ) ( )t f r g θ= =                             (6) 

Then, calculate the various data for the dragon head per second: 0r , 0θ , 0x , 0y . 

Next, calculate the position ir , iθ and velocity v
ir  of the dragon body: 
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Calculate the following functions every second: 
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There are multiple solutions, but the unique solution can be determined using the given conditions 

0 1 0θ θ θ π< < + . 

Taking the derivative of both sides of equation 2 with respect to t gives 
1dr

dt . Next, iterate on r ,

θ ,
dr
dt . 
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The data for each segment of the dragon body is obtained per second. 

2.2. Model Solution 
2.2.1. Basic Parameter Setup 

The code initializes the workspace by clearing it and sets various parameters for calculating the 
trajectory of the dragon dance team. Key parameters include the hole spacing, which refers to the 
distance between the holes in the dragon's body and the dragon head, and is linked to the geometric 
size of the benches. The total number of benches is 223, with 1 for the dragon's head, 221 for the 
body, and 1 for the tail. The dragon's head is set to move at a speed of 100 cm/s (1 m/s), and the pitch, 
which determines the height of the spiral, is set at 55 cm. The dragon's movement follows a spiral 
path with 22 evenly spaced turns [1]. 

2.2.2. Spiral Trajectory Calculation 
The code generates the trajectory of the dragon dance team by calculating the position of each 

point using the formula for an evenly spaced spiral. First, the polar coordinates (angle and radius) for 
each point are determined using the spiral formula. These coordinates are then converted into 
Cartesian coordinates, which give the precise position of the spiral at each time point. The path is 
divided into segments, and the distance between adjacent points is calculated by finding the vector 
difference. The total travel distance for each segment of the dragon is tracked through cumulative 
calculations, providing a detailed representation of the dragon's movement. 

2.2.3. Dragon Team's Position and Velocity Calculation 
To calculate the position and velocity of the dragon dance team at different time points, the code 

utilizes an iterative process to update the bench positions. Initially, a list called Loong_list is created 
to store the data for each bench, including its length and its X and Y coordinates. This list is updated 
at each time step to reflect the current position of each bench in the sequence [2]. 

Starting from the dragon head, the position of each bench is updated along the spiral path based 
on the point number within the spiral. As the dragon moves, the latest position for the head, body, 
and tail is continuously updated. The position of each hole is recalculated by approximating the vector 
from one point to the next as a tangent vector. This tangent vector is scaled by the length of the bench, 
and the coordinates for the next hole are initialized accordingly. This iterative process allows the code 
to track the dragon’s movement through the spiral with high precision, updating its trajectory in real-
time. 

The code iteratively calculates the distance from each hole to the spiral and finds the two closest 
points on the spiral. The hole’s position is then updated to be closer to the line segment, with the 
coordinates scaled by the hole distance. 

Bench Velocity Calculation: The velocity at the target time is computed using the average velocity 
of the previous two and next two positions, with a uniform acceleration model. The time scale is 
proportional to the velocity difference at the previous and next times. 

2.2.4. Result Output 
The code is designed to capture data at specific time points (e.g., 0s, 60s, 120s) and for specific 
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benches (e.g., the 1st, 51st, 101st, 151st, and 201st of the dragon body, and the tail). These data are 
saved in location_results and velocity_results as the output. 

The model is run with the geometric parameters for the dragon benches (length, width, hole 
diameter, etc.), the dragon head speed, and the spiral pitch. The MATLAB code is used for numerical 
simulation, and graphs are generated. This solution models the motion based on a spiral and addresses 
the calculation of position and velocity along the spiral path for the dragon dance team. 

The extracted data is as shown in Table 1 and Table 2. 
The visualized data is as shown in Figure 1, Figure 2 and Figure 3. 

Table 1 The Result of Velocity 

  0 s 60 s 120 s 180 s 240 s 300 s 
Dragon Head 1 1 1 1 1 1 
The 1st Dragon Body   0.999971 0.999961 0.999945 0.999916 0.99986 0.999715 
The 51st Dragon Body 0.999757 0.999584 0.999577 0.999278 0.999017 0.998026 
The 101st Dragon Body 0.999594 0.999406 0.999298 0.998689 0.998457 0.997284 
The 151st Dragon Body 0.99947 0.999056 0.998936 0.998528 0.998149 0.996841 
The 201st Dragon Body 0.99935 0.998895 0.99885 0.998387 0.99788 0.996577 
Dragon Tail Back 0.999336 0.998869 0.998808 0.998322 0.997777 0.996441 

Table 2 The Result of Position 
  0 s 60 s 120 s 180 s 240 s 300 s 

Dragon Head x (m) 8.8 5.799174 -4.084885 -2.963577 2.594446 4.420293 
Dragon Tail y (m) 0 -5.771073 -6.304436 6.094791 -5.356743 2.320377 

The 1st Dragon Body x (m) 8.363819 7.456715 -1.445485 -5.237091 4.821178 2.459534 
The 1st Dragon Body y (m) 2.826543 -3.44039 -7.405838 4.359647 -3.56197 4.402444 

The 101st Dragon Body x (m) 2.914043 5.687137 5.361953 1.898825 -4.917348 -6.237718 
The 101st Dragon Body y (m) -9.918288 -8.001326 -7.557587 -8.471601 -6.379872 3.936001 
The 151st Dragon Body x (m) 10.861706 6.682227 2.388682 1.005091 2.965328 7.040715 
The 151st Dragon Body y (m) 1.828847 8.134571 9.7274 9.424752 8.39972 4.393039 
The 201st Dragon Body x (m) 4.554985 -6.619733 -10.62719 -9.287676 -7.457093 -7.458617 
The 201st Dragon Body y (m) 10.725163 9.025479 1.359744 -4.246754 -6.180775 -5.263435 

Dragon Tail Back x (m) -5.305318 7.364636 10.97431 7.383815 3.240964 1.784952 
Dragon Tail Back y (m) -10.67664 -8.79789 0.843584 7.49244 9.469353 9.301172 

 
Figure 1 Relationship between the Velocity of Some Dragon Body Sections and Time 
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Figure 2 Relationship between the Horizontal Coordinates of Some Dragon Body Sections and 

Time 

 
Figure 3 Relationship Between the Longitudinal Coordinates of Some Dragon Body Sections and 

Time 

3. Collision Detection Mechanism 
3.1. Geometric Relationship and Collision Judgement 

The model can simulate the trajectory of the dragon benches at each time point and generate graphs. 
During the simulation, the code detects whether a collision occurs. The principle is based on a point 
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and four triangles formed by the edges of a rectangle. The areas of these triangles are compared with 
the area of the rectangle. If the sum of the triangle areas is less than or equal to the area of the rectangle 
(within a certain threshold range), the system will determine that a collision has occurred and 
terminate the calculation, thus identifying the time at which the dragon can no longer continue to coil 
[3]. 

Since the dragon head has the largest area, its movement plane will inevitably cover all subsequent 
plates’ movement planes. A collision will always occur between the dragon head and the other 
benches. The first collision detection hole (hole1) is set between two holes of the dragon head, and 
the second detection hole (hole2) is traversed from hole1 + 3 until the dragon tail. 

If the collision condition is met: Further calculation can determine if the two benches have 
collided:By determining the unit direction vector and the coordinates of the rectangle's vertices, the 
four vertices are traversed. The triangle area method is used to judge whether there is overlap [4]. 

3.2. Simulation Experiment and Result Verification 
Through numerical simulation, at 412.478 seconds, the distance between the benches becomes 

smaller than the set threshold, and the motion stops. The position information at this point is saved in 
location_results_end, and the velocity information is saved in velocity_results_end. 

Through collision detection, we found that the dragon benches could not avoid a collision as the 
motion continued, as shown in Figure 4 and Figure 5, so the termination time is 412.478 seconds. 

 
Figure 4 Simulation Image When No Collision Occurs 

 
Figure 5 Simulation Image When Collision Occurs 
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4. Model Optimization 
4.1. Pitch Parameter Optimization 

The goal is to minimize the likelihood of collision in the simulation model by adjusting the pitch. 
The determination of the dragon’s motion trajectory and collision detection is the same as previous 
discussion. On this basis, the collision detection termination time is limited, and the pitch is adjusted 
step by step. 

To find the smallest pitch that avoids collision, the pitch value must be continuously adjusted, and 
the simulation should be rerun each time. For each run, the trajectory and motion of the dragon are 
calculated based on the given pitch. Collision detection is performed before the dragon head reaches 
the boundary for turning. If the collision detection module outputs a collision, it indicates that the 
pitch is too small, and it can be increased. If no collision occurs, the pitch can be further reduced until 
the smallest non-colliding value is found. 

We simulate that a collision occurs when the pitch is 45cm. Thus, a step-by-step incremental search 
algorithm is used, starting with an initial pitch of 45cm and a step size of 0.02cm, until no collision 
is detected. The pitch is found to be 45.04cm. Then, the binary search method is applied to gradually 
refine the smallest pitch that avoids collision. 

The final result is a pitch of 45.035cm, which allows the dragon head to move along the spiral 
trajectory up to the boundary of the turning space without causing a collision. 
4.2. Optimization of the Turnaround Path 

 
Figure 6 Simple Diagram of the Turnaround Path 

As shown in Figure 6, the spiral Equation in the Cartesian Coordinate System [5]. 
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Taking the derivative of both sides with respect to x, we get: 
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The arc length of the U-turn curve is: 
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The simulation begins by initializing the parameters, including the geometric information of the 

spiral line and circular arc. The complete trajectories of both the spiral and circular arc are then 
generated, and the position of each node is calculated. Using an approximation algorithm, the exact 
position of each bench is determined. The velocity is calculated through position differences, and the 
position and velocity information at each time point are stored. During the simulation, the dragon 
dance trajectory is plotted in real-time while checking for potential collisions. If a collision occurs, 
the simulation stops, and the position of the collision is output; if no collision is detected, the 
simulation continues until the specified time range is completed. For optimization, the circular arc 
can be adjusted by modifying the p_0 variable, which allows for further fine-tuning of the dragon's 
head turn and optimizing the entire dragon dance team's route. Collision handling can also be 
enhanced, such as by recording detailed information when a collision occurs or adjusting the 
trajectory to avoid future collisions. The final optimal route is chosen based on the scenario where 
the turning starting point is 427.5 cm from the origin, resulting in the shortest turning curve. 

4.3. Optimization of Travelling Speed 
The optimization of the dragon dance model focuses on adjusting the dragon head's velocity to 

ensure body speed stays below 200 cm/s. Initially, the body velocity often exceeded the head's due to 
the path's geometry. The entry and exit of the spiral are symmetric, and the spiral and circular arc are 
tangent at 427.5 cm from the center, leading to velocity increases during transitions. The radii ratio 
of 2:1 at the spiral's entry and exit tightens the curve, further increasing body speed. With the dragon 
head moving at 1 m/s, these geometric factors caused peak body velocities of up to 5.8 m/s, 
particularly at sharper curves. 

To minimize the body’s peak velocity, adjustments were made. The tangent point was shifted to 
450 cm from the center, and the radii ratio was reduced to 1:1, smoothing the path and reducing sharp 
transitions. This achieved a consistent velocity profile for the dragon, with the head's speed remaining 
at 1 m/s. As a result, the peak body velocity dropped significantly. Simulations showed that at 7.0404 
seconds, the maximum body velocity was reduced to 1.082 m/s. By increasing the dragon head’s 
speed to 1.848 m/s, the body’s maximum velocity reached 1.9998 m/s at 3.8353 seconds, ensuring it 
remained under the 2 m/s limit. These optimizations ensured smooth and controlled movement for 
the dragon dance. 

5. Conclusion 
This paper presents a comprehensive study on the modeling, solution, and optimization of the 
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motion of a dragon dance team following an equidistant spiral trajectory. A kinematic model based 
on the spiral equation is developed, with displacement, velocity, and acceleration equations derived 
for the dragon head and body. Numerical simulations are conducted to calculate the motion 
trajectories and velocities of the dragon at different time points, and the results are displayed through 
tables and graphs. A collision detection mechanism is introduced to identify overlaps between the 
dragon’s benches, and a triangular area method is applied to detect collisions between the dragon 
head and its following segments. The first collision occurs at 412.478 seconds, preventing further 
movement along the spiral path.  

Optimization research follows, focusing on the pitch parameter and the turnaround curve path. The 
minimum pitch of 45.035 cm is found through the incremental search and bisection method, allowing 
the dragon to navigate the spiral path without collisions. The optimal turnaround path is achieved 
when the tangent distance between the spiral and arc is 427.5 cm. Further, the maximum velocity of 
the dragon body is limited to 2 m/s through optimization of the dragon head’s velocity and path 
parameters, ensuring smooth and controllable movement.  

The findings of this study offer valuable theoretical insights and algorithmic tools for path planning, 
formation control, and collision detection in dragon dance performances. The proposed model and 
optimization techniques can be adapted for the motion control and path optimization of other multi-
segment rigid bodies, expanding their potential applications beyond dragon dance. 

References 
[1] Heermann D W, Heermann D W. Computer-simulation methods[M]. Springer Berlin Heidelberg, 
1990. 
[2] Wilkins M L. Computer simulation of dynamic phenomena[M]. Springer Science & Business 
Media, 2013.  
[3] Lin M, Gottschalk S. Collision detection between geometric models: A survey[C]//Proc. of IMA 
conference on mathematics of surfaces. 1998, 1: 602-608. 
[4] Ericson C. Real-time collision detection[M]. Crc Press, 2004. 
[5] Nakamura T, Sekine T, Yokokawa S. Analytical method of spiral line[J]. Electronics and 
Communications in Japan (Part I: Communications), 1983, 66(10): 49-57. 

159


	1. Introduction
	2. Construction of Spiral Motion Model Dynamic Model
	2.1. Construction of the Kinematic Model
	2.2. Model Solution
	2.2.1. Basic Parameter Setup
	2.2.2. Spiral Trajectory Calculation
	2.2.3. Dragon Team's Position and Velocity Calculation
	2.2.4. Result Output


	3. Collision Detection Mechanism
	3.1. Geometric Relationship and Collision Judgement
	3.2. Simulation Experiment and Result Verification

	4. Model Optimization
	4.1. Pitch Parameter Optimization
	4.2. Optimization of the Turnaround Path
	4.3. Optimization of Travelling Speed

	5. Conclusion
	References



